石墨烯填充高导热塑料研究进展Research Progress of Graphene Filled High-thermal Conductive Plastic
陈飞;颜春;刘玲;祝颖丹;刘俊龙;
摘要(Abstract):
阐述了石墨烯和石墨烯填充高导热塑料的制备方法及导热性能,并对几种石墨烯/聚合物复合材料的制备方法进行了对比。分析了影响石墨烯填充高导热塑料导热性能的因素,并对石墨烯及其填充高导热复合材料的研究方向及发展前景进行了展望。
关键词(KeyWords): 石墨烯;导热塑料;热导率;影响因素
基金项目(Foundation): 宁波市重大专项(2014S10004);; 中国科学院科技服务网络计划(KFJ-EW-STS-080);; 宁波市自然基金项目(2013A610017)
作者(Authors): 陈飞;颜春;刘玲;祝颖丹;刘俊龙;
DOI: 10.15925/j.cnki.issn1005-3360.2015.01.016
参考文献(References):
- [1]董阜敏,黄祖洪.周健.国内外高导热主绝缘材料的现状及发展动向[J].电气技术,2009(1):5-8.
- [2]马传国,容敏智,章明球.导热高分子复合材料的研究与应用[J].材料工程,2002(2):40-44.
- [3]Prasher R S,Chang J Y,Sauciuc I,et al.Nano micro technology-based next-generation package-level cooling solutions[J].Intel Technology Journal,2005,9(4):285-296.
- [4]麦伟宗,王飞,黄李胜,等.导热PA6复合材料导热性能的研究[J].合成材料老化与应用,2013,42(5):14-15.
- [5]林俊辉,姜宏伟.氧化锌填充PA6制备绝缘导热塑料的研究[J].绝缘材料,2013,46(4):30-34.
- [6]于伟,谢华清,陈立飞,等.高导热含石墨烯纳米片尼龙6复合材料[J].工程热物理学报,2013,34(9):1 749-1 751.
- [7]Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
- [8]Kim K S,Zhao Y,Jang H,et al.Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457:706-710.
- [9]Li X S,Cai W W,An J H,et al.Large-area synthesis of high-quality and uniform graphene films on copper foils[J].Science,2009,324:1 312-1 314.
- [10]Wang Y,Xu X,Lu J,et al.Toward high throughput interconvertible graphane-to-graphene growth and patterning[J].ACS Nano,2010,4(10):6 146-6 152.
- [11]Berger C,Song Z M,Li T B,et al.Ultrathin epitaxial graphite:2D electron gas properities and a route toward graphene-based nanoelectronics[J].J Phys Chem B,2004,108:19 912-19 916.
- [12]Berger C,Song Z,Li X,et al.Electron confinement and coherence in patterned epitaxial graphene[J].Science,2006,312:1 191-1 196.
- [13]Choucair M,Thordarson P,Stride J A.Gram-scale production of graphene based on solvothermal synthesis and sonication[J].Nature Nanotechnol,2009,4(1):30-33.
- [14]Cai J M,Ruffieux P,Jaafar R,et al.Atomically precise bottom-up fabrication of graphene nanoribbons[J].Nature,2010,466:470-473.
- [15]Hernandez Y,Nicolosi V,Lotya M,et al.High-yield production of graphene by liquid phase exfoliation of graphite[J].Nature Nanotech,2008,3(9):563-568.
- [16]Lotya M,Hernandez Y,King P J,et al.Liquid phase production of graphene by exfoliation of graphite in surfactat/water solutions[J].J Am Chem Soc,2009,131(10):3 611-3 620.
- [17]Li X L,Zhang G Y,Bai X D,et al.Highly conducting graphene sheets and langmuir-blodgett films[J].Nature Nanotech,2008,3(9):538-542.
- [18]Wu C X,Dong G F,Guan L.Production of graphene sheets by a simple helium arcdischarge[J].Physica E,2010,42(5):1 267-1 271.
- [19]Li D,Muller M B,Gilje S,et al.Processable aqueous dispersions of graphene nanosheets[J].Nature Nanotech,2008,3(2):101-105.
- [20]Fan X B,Peng W C,Li Y,et al.Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation[J].Adv Mater,2008,20(23):4 490-4 493.
- [21]Fernandez-Merino M J,Guardia L,Paredes J I,et al.Vitamin C is an ideal substitube for hydrazine in the reduction of graphene oxide suspensions[J].J Phys Chem C,2010,114(14):6 426-6 432.
- [22]Vinodgopal K,Neppolian B,Lightcap I V,et al.Sonolytic design of graphene-Au nanocomposites:Simultaneous and sequential reductiom of graphene oxide and Au(III)[J].J Phys Chem Lett,2010,1(13):1 987-1 993.
- [23]Hassan H M A,Abdelsayed V,Khder A,et al.Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media[J].J Mater Chem,2009,19:3 832-3 837.
- [24]Stankovich S,Dikin D A,Piner R D,et al.Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1 558-1 565.
- [25]Matsumoto Y,Koinuma M,Kim S,et al.Simple photoreduction of graphene oxide nanosheet under mild conditions[J].ACS Appl Mater Interfaces,2010,2(12):3461-3 466.
- [26]Balandin A A,Ghosh S,Bao W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
- [27]Kim P,Shi L,Majumdar A,et al.Thermal transport measurements of individual multiwalled nanotubes[J].Physical Review Letters,2001,87(21):215 502-215 504.
- [28]Pop E,Mann D,Wang Q,et al.Thermal conductance of an individual single-wall carbon nanotube above room temperature[J].Nano Letters,2005,6(1):96-100.
- [29]Lindsay L,Broido D A,Mingo N.Flexural phonons and thermal transport in graphene[J].Physical Review B,2010,82(11):115 427-115 432.
- [30]Hu J,Ruan X,Chen Y P.Thermal conductivity and thermal rectification in graphene nanoribbons:A molecular dynamics study[J].Nano Letters,2009,9(7):2 730-2 735.
- [31]Seol J H,Jo I,Moore A L,et al.Two-dimensional phonon transport in supported graphene[J].Science,2010,328:213-216.
- [32]Kim H,Miura Y,Macosko C W.Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J].Chem Mater,2010,22(11):3 441-3 450.
- [33]Zhang H,Zheng W,Yan Q,et al.Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J].Polymer,2010,51(5):1191-1 196.
- [34]Hu N,Wei L,Wang Y,et al.Graphene oxide reinforced polyimide nanocomposites via in situ polymerization[J].J Nanosci Nanotechno,2012,12(1):173-178.
- [35]Kim J S,Hong S,Park D W,et al.Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation[J].Macromolecular Research,2010,18(6):558-565.
- [36]Zhao X,Zhang Q H,Hao Y P,et al.Enhanced mechanical properties of graphene-based poly(vinyl alcohol)composites[J].Macromolecules,2010,43:2 357-2 363.
- [37]Kulkarni D D,Choi I,Singamaneni S S,et al.Graphene oxide-polyelectrolyte nanomembranes[J].ASC Nano,2010,4(8):4 667-4 676.
- [38]Agari Y,Uno T.Estimation on thermal conductivities of filled polymer[J].J Appl Polym Sci,1986,32:5 705-5 712.
- [39]Yu A P,Ramesh P,Itkis M E,et al.Graphite nanopalteletepoxy composite thermal interface materials[J].J Phy Chem C,2007,111(21):7 565-7 569.
- [40]Ghosh S,Bao W,Nika D L,et al.Dimensional crossover of thermal transport in few-layer graphene[J].Nature Materials,2010,9:555-558.
- [41]Yu A,Ramesh P,Sun X,et al.Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J].Adv Mater,2008,20(24):4 740-4 744.
- [42]于伟,谢华清.氧化石墨烯膜各向异性热传输特性研究[J].工程热物理学报,2012,33(9):1 609-1 611.
- [43]Liang Q,Yao X,Wang W,et al.A three-dimensional vertically aligned funcationalized multilayer graphene architecture:An approach for graphene-based thermal interfacial materials[J].ACS Nano,2011,5(3):2 392-2 401.
- [44]Song S H,Park K H,Kim B H,et al.Enhanced thermal conductivity of epoxy-graphene composites by using nonoxidized graphene flakes with non-covalent functionalization[J].Advanced Materials,2013,25(5):732-737.
- [45]Hung M T,Choi O,Ju Y S,et al.Heat conduction in graphite nanoplatelet-reinforced polymer nanocomposites[J].Appl Phys Lett,2006,89:1-3.
- [46]Teng C C,Ma C C M,Lu C H,et al.Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites[J].Carbon,2011,49(15):5 107-5 116.
- [47]Wang B,Zhang Y,Zhang J,et al.Noncovalent method for improving the interaction between reduced graphene oxide and poly(ε-caprolactone)[J].Ind Eng Chem Res,2013,52(45):15 824-15 828.
- [48]Wang B,Li Y,Weng G,et al.Reduced graphene oxide enhances the crystallization and orientation of poly(ε-caprolactone)[J].Compos Sci Technol,2014,96:63-70.
- [49]胡光云,唐莉,刘云.中美在石墨烯领域的研究轨迹及政策建议[J].科研管理,2014,35(4):68-75.